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Analytical verification of scaling laws for the Ising model with external field in fractal lattices
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~Received 22 February 1999; revised manuscript received 1 June 1999!

We use an exact recursion procedure to verify analytically, without any intermediary numerical calculation,
the validity of the hyperscaling~Josephson! law extended to fractals, the Rushbrooke and Griffiths scaling laws
for the Ising ferromagnet with external magnetic field in the whole family of Migdal-Kadanoff-like hierarchical
lattices.@S1063-651X~99!05809-2#

PACS number~s!: 05.50.1q, 05.70.2a
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Many classical spin systems, such as the Ising and P
models, defined on hierarchical lattices~HLs! constitute a
class of exactly solvable models which attracted much at
tion in the study of critical phenomena. The analytical so
tions of spin models on the Bethe lattice, for example,
cited by Baxter@1# as one of the interesting exact solutio
for higher-dimensional spin systems. The Bethe lattice
be viewed as a kind of HL@2–5# which is a relevant family
of non-Bravais lattices that can be considered, in many s
ations, as approximated lattices of some Bravais ones~see,
e.g., Ref.@6#!. Some results are relatively simple to obta
using this kind of fractal lattices, in particular, critical fron
tiers and correlation length critical exponents. However,
exact calculation of other physical quantities, such as spe
heat, magnetization, and susceptibility, as well as their c
responding critical exponents, are much more complicate
obtain within the HL approach and we sometimes find in
literature the use of heuristic recipes to obtain these funct
and exponents@7–10#.

It is well known that in fractal systems, the critical exp
nents depend of other geometric parameters, such as con
tivity and lacunarity@5#, and not only of the fractal dimen
sion itself. Hence, the classification based on universa
classes cannot work out on fractal systems in the same
as on translationally invariant lattices. Also the validity
not of the scaling laws between the critical exponents
fractal systems, and the role played by the fractal dimens
in these relations, yeld controversial results in the literatu
Concerning the hyperscaling law (dn522a), it has been
numerically verified in a number of HL systems~with the
fractal dimensiondf replacing d) @11–13# and has been
proved analytically for the three-state antiferromagne
Potts model on a diamond-type HL family@14# and for the
Ising ferromagnet on the whole family of Migdal-Kadanof
like HLs @15#. Numerical results for the Ising model on S
erpinski carpets@16# verify the hyperscaling only through a
effective dimension which is slightly different from the la
tice fractal dimension. Concerning the Rushbrooke sca
law (a12b1g52), there is much less evidence in favor
its validity on fractal systems. It has been verified@17# for
the Potts ferromagnet on the Wheatstone-bridge HL us
approximate methods in the derivation ofb andg. It has also
been verified for the Ising ferromagnet in anm-sheet Sier-
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pinski gasket family using numerical values for the exp
nents derived from exact expressions of the thermal qua
ties @12#.

We consider the Ising ferromagnet with external magne
field on the family of Migdal-Kadanoff-like hierarchical lat
tices. These lattices are generated in an iterative man
starting from a two-point lattice joined by a single bon
~level n50) which is replaced by a basic cell consisting ofP
branches in parallel, each of them comprisingb bonds in
series. This recursive procedure is illustrated in Fig. 1 for
cases (P52,b52) ~the diamond HL! and (P52,b53). In
the n→` limit one obtains a lattice, which we denote a
HL(P,b) , with fractal dimension

df
(P,b)5

ln Pb

ln b
. ~1!

In the following calculations the paramatersP>2 and b
>2 are fixed.

The model is described by the dimensionless Hamilton

2bHn5Kn(
^ i , j &

s is j1Hn(
^ i , j &

~s i1s j !, ~2!

where b51/kBT, T being the temperature,Kn5bJn , Jn
.0 is the coupling constant between nearest-neighbor p
at the n level, Hn5bBn , and Bn is the external magnetic

FIG. 1. First three steps of construction of the HL(P52,b52) and
HL(P52,b53) . The open circles are the root sites of the hierarchi
lattices.
3399 © 1999 The American Physical Society
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field at leveln. The sum is over all the first neighbors^ i , j & of
the lattice. Note that this Hamiltonian provides a magne
field of magnitudezi

(n)Hn at the spins i , wherezi
(n) is the

coordination number of sitei at then-level HL. The presence
of this coordination number in the field term asserts that
Hamiltonian ~2! is closed ~no more couplings among th
spins are generated! and form-invariant under our RG trans
formation @18,5#.

In Ref. @15# we considered the zero field model and w
shown that the dimensionless internal energy per bond
the n level system follows the exact recursion relation

En
(b)5A(b)~xn!En21

(b) 1C(b)~xn!. ~3!

with the functionsA(b) and C(b) given by ~we definedx
[eK)

A(b)~x!5
4x2~x421!b21

~x211!2b2~x221!2b

and

C(b)~x!5
4x2~x421!

~x211!2b212~x221!2b21
. ~4!

Following along this same procedure~described in details in
Refs.@19,15#!, we obtain here a recurrence for the local ma
netizations at different levels given by

(
i 51

b21

^s i&
(b)5B(b)~xn ,hn!$^m1&

(b)1^m2&
(b)%, ~5!

with ~in the particular caseH50)

B(b)~x,h51!5
x421

2 S ~x211!b212~x221!b21

~x211!b1~x221!b D , ~6!

where we defined the variableh[eH. We shall omit here the
expression ofB(b)(x,h) for the general caseHÞ0 since it is
quite long. In Eq.~5!, the spinsm1 and m2 were joined by
one bond at the (n21) level HL, which, at leveln, was
replaced by the basic cell which has in one of itsP bonds
~note that theseP bonds are equivalent! the (b21) spinss.

From Eq. ~5! we can show that the magnetization~per
site! of the entire lattice, defined by

mn~x,h!5
1

Ncn
(P,b) (

i
zi

(n)s i , ~7!

where Ncn
(P,b)5( izi

(n)52(bP)n was introduced in order to
normalize the magnetization atT50, obeys the relation

mn~xn ,hn!5S 112B(b)~xn ,hn!

b Dmn21~xn21 ,hn21!.

~8!

From Eq. ~8! we can show that the magnetization of t
system in the limitn→` is given by
c

e

or

-

m~x,h!5)
i 51

` S 112B(b)~xi ,hi !

b D , ~9!

which generalizes a previous result@20# obtained for the zero
field andb52 case.

Also from Eq.~8! we can show that the zero-field susce
tibility defined by

xn~xn![
]mn~xn ,hn!

]hn
U

hn51

~10!

obeys the recursive relation

xn~xn!5r h
(P,b)S 112B(b)~xn ,hn51!

b Dxn21~xn21!,

~11!

where we defined

r h
(P,b)[

]h8~x,h!

]h U
hc

5P@112B(b)~x,hc!#, ~12!

andh8(x,h) is the RG transformation which we define in th
following.

In order to complete our recursive equations we need
renormalization of the couplingKn215K8 ~or xn215x8)
and fieldHn215H8 ~or hn215h8) in terms of the coupling
Kn5K ~or xn5x) and fieldHn5H ~or hn5h). This is es-
tablished in a standard way by preserving the correlat
function between the roots of the HL~see, e.g., Ref.@15#!.
We shall omit here the expressions ofx8(x,h) andh8(x,h)
since they are quite long. The RG equations, for allP>2
andb>2, admit two trivial stable fixed points~note that for
the general case these points are over the axish51),
namely,x51 (T→`) ~paramagnetic phase! andx→` (T
50) ~ferromagnetic phase!, as well as a critical~unstable!
fixed pointx(P,b)* (0,x(P,b)* ,`). Hereafter we will use the
abbreviated notation (xc ,hc) for the critical point (x(P,b)* ,h
51) of the HL(P,b) system. Linearization ofx8(x) in the
neighborhood of the critical pointxc leads to the therma
~correlation length! critical exponentn (P,b):

n (P,b)5
ln b

ln r x
(P,b)

, where r x
(P,b)[

dx8~x!

dx U
xc

5PbA(b)~xc!.

~13!

In Ref. @15# we verified analytically the hyperscaling law
extended to fractal systems, namely,

df
(P,b)n (P,b)522a (P,b), ~14!

with

a511
ln A(b)~xc!

ln r x
(P,b)

, ~15!

and using the expressions of Eqs.~1! and ~13! also.
Following along the same lines, assuming that close

xc , the magnetizationmn can be written asmn5luenub, we
obtain, from Eq.~8!,
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b (P,b)52
ln@r h

(P,b)/~Pb!#

ln r x
(P,b)

. ~16!

Analogously, from Eq.~11!, we can show that theg expo-
nent of the zero-field susceptibility@xn5l(en)2g# is given
by

g (P,b)5
ln@~r h

(P,b)!2/~Pb!#

ln r x
(P,b)

, ~17!

which, taking into account Eqs.~15! and ~16! verifies ana-
lytically the Rushbrooke scaling law

a (P,b)12b (P,b)1g (P,b)52. ~18!

Assuming that atxc the system magnetization behaves
mn5l(hn21)1/d, we obtain, from Eq.~8!,

d (P,b)52
ln r h

(P,b)

ln@r h
(P,b)/~bP!#

, ~19!

from which we can verify@using Eqs.~15! and~16! also# the
Griffiths scaling law

a (P,b)1b (P,b)~d (P,b)11!52. ~20!

If we also assume the validity of the Fisher scaling law
cs

tt

k,

a,

o

s

~22h (P,b)!n (P,b)5g (P,b), ~21!

which relates theh exponent of the two-point correlatio
function @G(xc ,hc);r 2(d221h)# with the exponentsn and
g, we obtain, using Eqs.~13! and ~17!,

h (P,b)5
1

2

ln Pb3

ln r h
(P,b)

. ~22!

In summary, we used a method that allowed us to calcu
exact recurrence relations for several thermal quantities
the Ising ferromagnet with external field in the whole fam
of Migdal-Kadanoff-like hierarchical lattices and to obta
the critical exponentsn, a, b, g, and d. With the exact
expressions of these exponents we proved analytically, w
out any intermediary numerical calculation, the validity
the hyperscaling, Rushbrooke and Griffiths scaling laws
this large class of fractal systems. Assuming also the valid
of the Fisher scaling law@(22h)n5g# we obtained the
exponenth of the correlation function for these systems.

As it is well known, the scaling laws are an immedia
outcome of the renormalization group in the absence of d
gerous irrelevant variables. However, the point of this pa
was to provide an explicit, analytical verification of the
laws, something that has not been done explicitly earlier
this large class of systems and, mainly, for this complete
of scaling laws.
.
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